Three-dimensional structure of bacterial luciferase from Vibrio harveyi at 2.4 A resolution.

نویسندگان

  • A J Fisher
  • F M Raushel
  • T O Baldwin
  • I Rayment
چکیده

Luciferases are a class of enzymes that generate light in the visible spectrum. Luciferase from luminous marine bacteria is an alpha-beta heterodimer monooxygenase that catalyzes the oxidation of FMNH2 and a long-chain aliphatic aldehyde. The X-ray crystal structure of bacterial luciferase from Vibrio harveyi has been determined to 2.4 A resolution. The structure was solved by a combination of multiple isomorphous replacement and molecular averaging between the two heterodimers in the asymmetric unit. Each subunit folds into a (beta/alpha)8 barrel motif, and dimerization is mediated through a parallel four-helix bundle centered on a pseudo 2-fold axis that relates the structurally similar subunits. The vicinity of the active site has been identified on the alpha subunit by correlations with similar protein motifs and previous biochemical studies. The structure presented here represents the first molecular model of a bioluminescent enzyme.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structure of the beta 2 homodimer of bacterial luciferase from Vibrio harveyi: X-ray analysis of a kinetic protein folding trap.

Luciferase, as isolated from Vibrio harveyi, is an alpha beta heterodimer. When allowed to fold in the absence of the alpha subunit, either in vitro or in vivo, the beta subunit of enzyme will form a kinetically stable homodimer that does not unfold even after prolonged incubation in 5 M urea at pH 7.0 and 18 degrees C. This form of the beta subunit, arising via kinetic partitioning on the fold...

متن کامل

Screening and evaluation of indigenous bacteria from the Persian Gulf as a probiotic and biocontrol agent against Vibrio harveyi in Litopenaeus vannamei post larvae

Isolation of autochthonous bacteria from marine sources as a potential probiont in biocontroling against pathogenic Vibrio species in the shrimp culture industry was the aim of current research. A total of 198 bacterial strains were isolated from pond water, sediment, hepatopancreas and gut samples of shrimps after culturing the samples on Tryptic Soy Agar and incubated at 30 °C for 24-48 h. Th...

متن کامل

The 1.5-A resolution crystal structure of bacterial luciferase in low salt conditions.

Bacterial luciferase is a flavin monooxygenase that catalyzes the oxidation of a long-chain aldehyde and releases energy in the form of visible light. A new crystal form of luciferase cloned from Vibrio harveyi has been grown under low-salt concentrations, which diffract x-rays beyond 1.5-A resolution. The x-ray structure of bacterial luciferase has been refined to a conventional R-factor of 18...

متن کامل

Screening and evaluation of indigenous bacteria from the Persian Gulf as a probiotic and biocontrol agent against Vibrio harveyi in Litopenaeus vannamei post larvae

Isolation of autochthonous bacteria from marine sources as a potential probiont in biocontroling against pathogenic Vibrio species in the shrimp culture industry was the aim of current research. A total of 198 bacterial strains were isolated from pond water, sediment, hepatopancreas and gut samples of shrimps after culturing the samples on Tryptic Soy Agar and incubated at 30 °C for 24-48 h. Th...

متن کامل

Structural distinctions of fast and slow bacterial luciferases revealed by phylogenetic analysis

MOTIVATION Bacterial luciferases are heterodimeric enzymes that catalyze a chemical reaction, so called bioluminescence, which causes light emission in bacteria. Bioluminescence is vastly used as a reporter system in research tools and commercial developments. However, the details of the mechanisms that stabilize and transform the reaction intermediates as well as differences in the enzymatic k...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biochemistry

دوره 34 20  شماره 

صفحات  -

تاریخ انتشار 1995